ORGANIC LETTERS

2006 Vol. 8, No. 20 4645–4647

Ring Expansion/Homologation—Aldehyde Condensation Cascade Using *tert*-Trihalomethylcarbinols

J. R. Falck,*,† Anyu He,† L. Manmohan Reddy,† Abhijit Kundu,† Deb K. Barma,† A. Bandyopadhyay,† Sukanta Kamila,† Radha Akella,† Romain Bejot,‡ and Charles Mioskowski*.‡

Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, and Laboratoire de Synthèse Bio-Organique, UMR 7175 - LC1, Faculté de Pharmacie, Université Louis Pasteur, 74 Route du Rhin, BP 24, 67 401 Illkirch, France

j.falck@utsouthwestern.edu; mioskow@aspirine.u-strasbg.fr

Received August 7, 2006

ABSTRACT

HO
$$CX_3$$
 RCHO $CrCl_2$ $X = CI$, Br

Treatment of cyclic *tert*-trihalomethylcarbinols with CrCl₂ in THF/HMPA in the presence of aryl or aliphatic aldehydes initiates a cascade sequence of one carbon ring expansion—olefination affording conjugated exocyclic ketones. Acyclic *tert*-trihalomethylcarbinols undergo a comparable cascade of one carbon homologation—olefination.

Trihalomethylcarbinols and their derivatives are a diverse¹ and readily accessible class of functionalized alcohols.² Their reduction, inter alia, electrochemical,³ zerovalent metals/metal salts,⁴ or aqueous Cr(II),⁵ principally induces elimination to the corresponding 1,1-dihaloolefin. However, our

laboratories recently observed that sec-trihalomethylcarbinol derivatives follow a different reaction manifold when reduced with Cr(II) salts in THF leading stereoselectively to (Z)- α -haloenol esters and (Z)- β -haloenol ethers. We consequently examined the behavior under similar conditions of tert-trihalomethylcarbinols in the presence of aldehydes and report herein a cascade sequence of one carbon ring expansion/homologation—olefination affording conjugated ketones.

The cascade sequence was optimized using carbinol 1^9 (X = Cl) and benzaldehyde **2** as the test system. The best yield of adduct 3^{10} was obtained using CrCl₂ (6 equiv) in THF/HMPA (2:1) at 40 °C (Table 1, entry 1). Using the tribromo version of **1** (X = Br), the results were identical,

[†] University of Texas Southwestern.

[‡] Université Louis Pasteur.

⁽¹⁾ For example, see: (a) Kiehlmann, E.; Loo, P.-W. Can. J. Chem. 1969, 47, 2029–2037. (b) Corey, E. J.; Link, J. O. Tetrahedron Lett. 1992, 33, 3431–3434. (c) Khrimian, A. P.; Oliver, J. E.; Waters, R. M.; Panicker, S.; Nicholson, J. M.; Klun, J. A. Tetrahedron: Asymmetry 1996, 7, 37–40. (d) Wang, Z.; Campagna, S.; Yang, K.; Xu, G.; Pierce, M. E.; Fortunak, J. M.; Confalone, P. N. J. Org. Chem. 2000, 65, 1889–1891. (e) Reeve, W.; Barron, E. R. J. Org. Chem. 1975, 40, 1917–1920.

<sup>W.; Barron, E. R. J. Org. Chem. 1975, 40, 1917–1920.
(2) (a) Aggarwal, V. K.; Mereu, A. J. Org. Chem. 2000, 65, 7211–7212.
(b) Taguchi, H.; Yamamoto, H.; Nozaki, H. J. Am. Chem. Soc. 1974, 96, 3010–3011.
(c) Corey, E. J.; Link, J. O.; Shao, Y. Tetrahedron Lett. 1992, 33, 3435–3438.</sup>

⁽³⁾ Shono, T.; Kise, N.; Yamazaki, A.; Ohmizu, H. *Tetrahedron Lett.* **1982**, *23*, 1609–1612.

^{(4) (}a) Kiehlmann, E.; Bianchi, R. J.; Reeve, W. Can. J. Chem. 1969, 47, 1521–1527. (b) Ranu, B. C.; Samanta, S.; Das, A. Tetrahedron Lett. 2002, 43, 5993–5995. (c) Li, J.; Xu, X.; Zhang, Y. Tetrahedron Lett. 2003, 44, 9349–9351. (d) Farkas, J.; Kourim, P.; Sorm, F. Collect. Czech. Chem. Commun. 1959, 24, 2230–2236.

⁽⁵⁾ For seminal studies regarding the reactivity of polyhalogenated substrates with Cr(II), see: Wolf, R.; Steckhan, E. *J. Chem. Soc., Perkin Trans. 1* **1986**, 733–739.

⁽⁶⁾ Bejot, R.; Tisserand, S.; Reddy, L. M.; Barma, D. K.; Baati, R.; Falck, J. R.; Mioskowski, C. *Angew. Chem., Int. Ed.* **2005**, *44*, 2008–2011.

⁽⁷⁾ For a definition of cascade reactions and extensive examples, see: Tietze, L. F.; Beifuss, U. *Angew. Chem., Int. Ed. Engl.* **1993**, *32*, 131–163

⁽⁸⁾ Review: Hesse, M. Ring Enlargement in Organic Chemistry; VCH: New York, 1991.

^{(9) (}a) Sibille, S.; d'Incan, E.; Leport, L.; Perichon, J. *Tetrahedron Lett.* **1986**, 27, 3129. (b) Shono, T.; Kise, N.; Masuda, M.; Suzumoto, T. *J. Org. Chem.* **1985**, 50, 2527.

⁽¹⁰⁾ Yanagisawa, A.; Goudu, R.; Arai, T. Org. Lett. 2004, 6, 4281.

Table 1. Ring Expansion/Homologation—Aldehyde Condensation Cascade^a

1 HO CX ₃ 1 PhCHO 2 X = CI, Br 2 1 (X = CI) Ph CHO 3 Ph 4 (X = CI) Ph CHO 6 7 4 (X = CI) MeO 8 9 OMe 5 (X = CI) MeO ₂ C 12 13 CO ₂ Me 6 (X = CI) MeO ₂ C 12 15: R = Me, R ₁ = H ^b 16: R = H, R ₁ = Me 10 CCI ₃ 8 10 CCI ₃ 9 19 19 HO CCI ₃ 10 2 Ph 11 R + H, R ₁ = Ph 21: R = H, R ₁ = Ph 22: R = Ph, R ₁ = H 11 R + O CCI ₃ 11 R + O CCI ₃ 11 R + O CCI ₃ 12 Ph CCI ₃ 11 R + O CCI ₃ 12 Ph CCI ₃ 11 R + O CCI ₃ 12 Ph CCI ₃ 11 R + O CCI ₃ 12 Ph CCCI ₃ 11 R + O CCI ₃ 12 Ph CCCI ₃ 12 Ph CCCI ₃ 13 CO ₂ Me 14 Ph CCCI ₃ 15: R = Me, R ₁ = H ^b 16: R = H, R ₁ = Me 20 Ph 23 ^d 21: R = H, R ₁ = Ph 25: R = Ph, R ₁ = H ^d 12 HO CCI ₃ 2	yield (%	product	aldehyde	carbinol	entry
X = Cl, Br 2		ĭī		HO CX3	
X = Cl, Br 2	72	Ph		\triangle	1
(X = Cl) Ph 4 5 Ph 3 (X = Cl) Ph 6 CHO 4 (X = Cl) MeO 8 9 OMe 5 (X = Cl) MeO ₂ C 12 13 CO ₂ Me HO CCl ₃ 7 2 R ₁ R ₁ = H ^b HO CCl ₃ 8 2 R ₁ R ₁ = Ph ^d 22: R = Ph, R ₁ = Ph 22: R = Ph, R ₁ = Ph HO CCl ₃ 11 R 2 Ph HO CCl ₃ 12 Ph HO CCl ₃ 13 Ph		0 3	2	X = Cl, Br	
3 (X = Cl) Ph CHO 7 Ph 4 (X = Cl) MeO 8 9 OMe 5 (X = Cl) MeO ₂ C 12 13 CO ₂ Me HO CCl ₃ 2 R ₁ = H ⁰ HO CCl ₃ 2 R ₁ = M HO CCl ₃ 2 Ph R ₁ = H HO CCl ₃ 2 Ph R ₁ = Ph 22: R = Ph, R ₁ = Ph 22: R = Ph, R ₁ = Ph HO CCl ₃ 2 Ph HO CCl ₃ 11 Ph 24: R = H, R ₁ = Ph 25: R = Ph, R ₁ = H ⁰ HO CCl ₄ 0 Ph O	75	Ph	Pn -	1 (Y = C!)	2
(X = Cl) FIT 6 7 Ph 4		`	4	(X - Oi)	
4	65	Ph	Ph CHO	(x 1 c)	3
4				(X = CI)	
(X = Cl) MeO 8 9 OMe 5 (X = Cl) MeO ₂ C 12 13 CO ₂ Me HO CCl ₃ R 15: R = Me, R ₁ = H ^b 16: R = H, R ₁ = Me O 11 O 11 O 11 O O 11 O O O O 12 O O O O 13 O O O O 14 O O O O 15 O O O O 16 O O O O 17 O O O 18 O O O 19 O O O 10 O O O 11 O O O 11 O O O 12 O O O 13 O O O 14 O O O 15 O O O 16 O O O 17 O O O 18 O O O 19 O O O 10 O O O 11 O O O 11 O O O 12 O O O 13 O O O 14 O O O 15 O O O 16 O O O 17 O O O 18 O O O 18 O O O 19 O O O 10 O O O 11 O O O 11 O O O 12 O O O 13 O O O 14 O O O 15 O O O 16 O O O 17 O O O 18 O O O 18 O O O 18 O O O 19 O O O 10 O O O 10 O O O 11 O O 12 O O O 13 O O 14 O O O 15 O O O 16 O O O 17 O O O 18 O O 18 O O O 18	60		СНО	1	4
5			MeO 8	(X = CI)	
(X = Cl) 10 11 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0	74		O CHO	4	-
6	82 ^c	$\bigcup_{11}\bigcup_{0}$	10	(X = Cl)	5
6		0			
The control of the co	49		Mag 0	(X = Cl)	6
2 R ₁ R ₁ = H ⁰ 15: R = Me, R ₁ = H ⁰ 16: R = H, R ₁ = Me 16: R = H, R ₁ = Me 2 18 17 18 2 2 18 4 17 4 15: R = Me, R ₁ = H ⁰ 16: R = H, R ₁ = Me 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		~ 13 ~ CO₂Me	MCC2C 12		
14 15: R = Me, R ₁ = H ⁰ 16: R = H, R ₁ = Me 0 17 HO CCl ₃ 9 19 HO CCl ₃ 2 21: R = H, R ₁ = Ph ^d 22: R = Ph, R ₁ = H HO CCl ₃ 11 R 12 24: R = H, R ₁ = Ph 25: R = Ph, R ₁ = H ^d HO CCl _b 11 12 24: R = H, R ₁ = Ph 25: R = Ph, R ₁ = H ^d HO CCl _b 11 15: R = Me, R ₁ = H ⁰ 16: R = H, R ₁ = Me 0 Ph 23 ^d Ph 24: R = H, R ₁ = Ph 25: R = Ph, R ₁ = H ^d HO CCl _b 0		R	2	7.0.1	7
14 15: R = Me, R ₁ = H ^b 16: R = H, R ₁ = Me 0 17 HO CCl ₃ 9 19 HO CCl ₃ 2 2 R ₁ R 21: R = H, R ₁ = Ph ^d 22: R = Ph, R ₁ = H HO CCl ₃ 11 R ₁ Ph 24: R = H, R ₁ = Ph 25: R = Ph, R ₁ = H ^d HO CCl _b 0 Ph 26d 0 0 0 0 0 0 0 0 0 0 0 0 0		$\bigvee_{R_1} \bigvee$	_		·
8	50 11	15: R = Me, R ₁ = H ^b		14	
17 HO CCl ₃ 9 19 HO CCl ₃ 10 2 R ₁ R 21: R = H, R ₁ = Ph ^d 22: R = Ph, R ₁ = H HO CCl ₃ 11 R ¹ 12 24: R = H, R ₁ = Ph 25: R = Ph, R ₁ = H ^d HO CCl _b 11 Ph 20 21: R = H, R ₁ = Ph 25: R = Ph, R ₁ = H ^d HO CCl _b 11 R ¹	• • •			HO CCI₃	
9	63		2	\wedge	8
9					
19 HO CCl ₃ 20 R ₁ R 21: R = H, R ₁ = Ph ^d 22: R = Ph, R ₁ = H R ₁ HO CCl ₃ 2 24: R = H, R ₁ = Ph 25: R = Ph, R ₁ = H ^d HO CCl ₂ Q HO CCl ₃				HO CCI₃	_
HO CCl ₃ 10 R ₁ R 21: R = H, R ₁ = Ph ^d 22: R = Ph, R ₁ = H R ₁ HO CCl ₃ 11 R D 2 24: R = H, R ₁ = Ph 25: R = Ph, R ₁ = H ^d HO CCl ₂ Q H	52	()	2	() ₁₀	9
2 Ph 23 ^d 21: R = H, R ₁ = Ph ^d 22: R = Ph, R ₁ = H R ₁ HO CCl ₃ 11 R D 2 24: R = H, R ₁ = Ph 25: R = Ph, R ₁ = H ^d HO CCl ₂ Q HO CCl ₃ Q HO CCl ₄ Q HO CCl ₂ Q HO CCl ₂ Q HO CCl ₃ Q HO CCl ₄					
21: R = H, R ₁ = Ph ^d 22: R = Ph, R ₁ = H HO CCl ₃ 11 R + H, R ₁ = Ph 24: R = H, R ₁ = Ph 25: R = Ph, R ₁ = H ^d HO CCl ₆ O			2		10
21: R = H, R ₁ = Ph ^d 22: R = Ph, R ₁ = H HO CCl ₃ R ₁ 2 24: R = H, R ₁ = Ph 25: R = Ph, R ₁ = H ^d HO CCl ₄ Q HO CCl ₆			2		10
22: R = Ph, R ₁ = H HO, CCl ₃ 11 R' 24: R = H, R ₁ = Ph 25: R = Ph, R ₁ = H ^d HO, CCl ₆ Q	46	Ph 23 ^d	'h ^a	R ₁ R 21 : R = H, R₁ = Pi	
2 24: R = H, R ₁ = Ph 25: R = Ph, R ₁ = H ^d HO CCl ₂	38		H	22: R = Ph, R ₁ = I	
224: R = H, R ₁ = Ph 25: R = Ph, R ₁ = H ^d HO CCl ₂				R ₁ NCCl ₃	
25: R = Ph, R ₁ = H ^d HO CCl _b U			2	~ `	11
HO CCI2	57	∠ 26°	'h	24: R = H, R ₁ = P	
12 HO CCI ₃ 2	20	0	H°		
² 'Y'Ph	70	Ĭ Dh	2	HO CCI ₃	12
27 28 "				27	

^a Trihalocarbinol (1 mmol) was added to a stirring suspension of CrCl₂ (6 mmol) and aldehyde (1 mmol) in THF/HMPA (2:1, 7 mL) at 40 °C for 4 h, quenched with water, and purified. ^b Structure and relative stereochemistry confirmed by X-ray analysis of the (*p*-tolylsulfonyl)hydrazone. ^c Used 1.5 equiv of carbinol. ^d Structure and relative stereochemistry confirmed by X-ray analysis.

except that the reaction only required 2 h instead of the 4 h when X = Cl. The output of 3 did not improve using a lower THF/HMPA ratio (i.e., 1:1), and it decreased linearly as the ratio increased in favor of THF. Other solvents or their combinations, e.g., THF only, DMF, EtOAc, dioxane, and HMPA, were not satisfactory. There was also a strict dependence on the amount of CrCl₂; 5 and 4 equiv gave 3 in 51% and 30% yields, accordingly. Efforts to use fewer equivalents of CrCl₂ by coupling the reaction to a regeneration system showed promise but clearly need further improvement. For instance, under conditions otherwise identical to entry 1, CrCl₂ (1 equiv)/Mn powder (8 equiv) and CrCl₂ (1 equiv)/Fe powder (10 equiv) gave rise to 3 in 58% and 42% yields, respectively.

We were gratified to find that the cascade was also applicable to aliphatic (entry 2, $4 \rightarrow 5^{10}$), α,β -unsaturated

(entry 3, $\mathbf{6} \rightarrow \mathbf{7}^{10}$), and electron-rich (entry 4, $\mathbf{8} \rightarrow \mathbf{9}$, and entry 5, $10 \rightarrow 11^{11}$) aldehydes. In all, only exocyclic olefins were generated including 5, the thermodynamically lessstable positional isomer. Notably, the yield of the adduct, as demonstrated in the condensation of 1 with 10 (entry 5), could be ameliorated utilizing a modest excess (1.5 equiv) of carbinol. Electron-deficient aldehydes were also suitable substrates, e.g., $12 \rightarrow 13$ (entry 6). Contrary to expectations,⁸ the ring enlargement-olefination of 14 favored 15,12 the product of migration of the less-substituted carbon, over 16¹³ by a 5:1 ratio (entry 7). Other ring sizes could be accommodated as well: cyclobutyl carbinol 17 evolved cyclopentenone 1810 (entry 8), and cyclohexyl carbinol 1996 furnished cycloheptenone **20**¹⁰ (entry 9). To gain some insight into the influence of relative stereochemistry and conformation on the efficiency of the ring expansion process, the conformationally constrained erythro/threo-pairs 21/22 (entry 10) and 24/25 (entry 11) were subjected to the standard reaction conditions. The erthyro-isomers 21 and 24, whose trichloromethyls are equatorially disposed, afforded significantly greater yields of the expected adducts 23 and 26, respectively, consistent with better orbital overlap in the transition state. Simple elimination to the corresponding 1,1-dichloroolefin accounted for the majority of the remaining material balance in all of these cases. Finally, comparable homologationolefinations could be achieved using acyclic trihalocarbinols, as evident by the isolation of 28 in good overall yield from the commercial carbinol **27** (entry 12).

Although the mechanistic details have not been established, at least two pathways seem plausible in light of the existing data (Scheme 1). Initial metalation of the trihalomethyl

moiety generates the key dihalochromium intermediate **29**. A second round of metalation leads to **30**,6 which rearranges to dichromium ketone **31**. The latter may exist as the dichromium enolate **37**. Either would be expected to add rapidly to the aldehyde and collapse to the final product, **33**. Alternatively, α -elimination of **29** forms carbene **34** and hence α -haloenol **35**, its rearrangement product. Addition to the aldehyde culminates in **33** via reduction of adduct **36**. When an equimolar mixture of 2-chlorocyclohexanone and

4646 Org. Lett., Vol. 8, No. 20, 2006

⁽¹¹⁾ Sanchez, I. H.; Larraza, M. I.; Rojas, I.; Kuri Brena, F.; Flores, H. J.; Jankowski, K. *Heterocycles* **1985**, *23*, 3033.

⁽¹²⁾ Trost, B. M.; Schroeder, G. M. J. Am. Chem. Soc. 1999, 121, 6759.
(13) Kutulya, L. A.; Kuz'min, V. E.; Stel'makh, I. B.; Khandrimalova,
T. V.; Shtifanyuk, P. P. J. Phys. Org. Chem. 1992, 5, 308.

2 was added to excess $CrCl_2$ in THF/HMPA (2:1), **3** was isolated in only 34% yield. This suggests that the keto tautomer of **35**, i.e., **38**, does not make a significant contribution to product formation.

Acknowledgment. Financial support provided by the Robert A. Welch Foundation and NIH (GM31278, DK38226).

Supporting Information Available: Synthetic procedures, analytical data, X-ray files, and ¹H/¹³C spectra for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL061953Q

Org. Lett., Vol. 8, No. 20, 2006